EAN DIANT

Cloudy with a Chance of APT
Novel Microsoft 365 Attacks in the Wild

Doug Bienstock
Josh Madeley

Doug Bienstock
@doughsec

* |Incident Response Manager — 7
years @ Mandiant

* Incident Response and Red
Team lead

* Author of adfsdump/spoof,
pwnauth

* Lifelong Green Bay Packers fan

E ©2021 Mandiant

Josh Madeley
@MadeleyJosh

= Manager of professional services
— ~6 years @ Mandiant

= Incident Response lead
= Not an author of public tools

= Canadian Ex-Pat that has
adopted the Patriots as my team
of choice

E ©2021 Mandiant

What's Going On?

= | ast year demonstrated that Apex threat actors have become all stars at
abusing Microsoft 365 to achieve their goals

= | arge scale espionage campaigns targeted data stored within Microsoft 365
= Novel techniques used to:

— Evade detection
— Automate data theft
— Persistent access beyond credential theft

E ©2021 Mandiant

EAN DIANT

Avoiding Detection

Disabling Security Features

= Bypass mailbox audit logging

Update license assignments

o When a user has both direct and inherited licenses, only the direct |

° ° ° ° ser can also be migrated between licenses.
— Set-MailboxAuditBypassAssociation ’ 4

— The following scenarios are not logged

Select licenses

= Mailbox Owner actions by specified users are not logged

= Delegate actions performed by the users on other mailboxes .. B ,
= Admin Actions b
= Downgrade licenses to E3 .

— Save the target organization some money
— Disables MailltemsAccessed logging

E ©2021 Mandiant

EAN DIANT

Mailbox Folder Permission
Abuse

If it aint broke, don't fix it.

Mailbox Folder Permissions

= Alternative to Mailbox Delegation

= Mailbox owner, administrator, or an account with full access permissions can
grant granular access to specific folders within a mailbox

= Part of Exchange Web Services (EWS)
= Many legitimate use cases will be seen in most environments

— Sharing calendars
— “Team” mailboxes

— Assistants
= First mentioned in red team context by Black Hills in 2017 post

https://www.blackhillsinfosec.com/abusing-exchange-mailbox-permissions-mailsniper

E ©2021 Mandiant

Common Permissions

= Permissions can be assigned as individual permissions or roles
= ReadItems grants access to read mail items in a specific folder
= Roles that have the ReadItems permission

— Author

— Editor

— NonEditingAuthor
— Owner

— PublishingEditor
— PublishingAuthor
— Reviewer*

E ©2021 Mandiant

Two Special Users

= Permissions can be assigned to individual users or mail-enabled security group
= Anonymous

— Any external, unauthenticated users
= Default (aka “Everyone” in certain logs)

— Any internal, authenticated users
= By default, the access for both special users is set to None.

E ©2021 Mandiant

Abuse

= Neat: Assign the “Default” user “Reviewer” role to allow any authenticated user
access to the mailbox folder

— Permissions do not cascade down from child to parent for existing folders, but newly
created folders do inherit

— Set-MailboxFolderPermission cmdlet OR EWS Managed API calls using a tool like
EWSEditor

"Item": {
"Id": "xxxx",
"ParentFolder": {
"Id": "o,
"MemberRights": "ReadAny, Visible, FreeBusySimple, FreeBusyDetailed",
"MemberSid": "S-1-1-@",

"MemberUpn": "Everyone",
"Name": "Inbox",
"Path": "\\Inbox"

m ©2021 Mandiant

Detection

= Sign-Ins use EWS to access the modified folders and view email

— Coded as “non-interactive” sign-ins

— Non-existent in the Unified Audit Log and must be specifically enabled to forward to
SIEM from other MSFT sources

= Unified Audit Log records Set-MailboxPermission events

— There will be noise from legitimate admin and background EXO activity
= |f Mail Items Accessed auditing is enabled look here

— Throttling concerns
= Enumerate Mailbox Folder Permissions with PowerShell

— Can be slow and should be targeted towards high value accounts

E ©2021 Mandiant

EAN DIANT

Hijacking Enterprise
Applications and App
Registrations

Types of Applications

= Two types of Applications

— App Registrations

= |nitial instance of an application, lives in the tenant that created the app

= Serves as a "blueprint" to create a service principal in any tenant that uses the application
— Enterprise Applications

= AKA Service Principals

= A”copy” of the app registration that lives in the consuming tenant

= Everything in Microsoft 365 uses this model, Microsoft Services like EXO are
“first-party” Service Principals

= The term "application" is used to refer to both Enterprise Applications and App
Registrations

E ©2021 Mandiant

Application Permissions

= Two types of permissions can be assigned:

— Delegated Permissions: Enable apps to perform API operations on behalf of a user —
limited to access data that user has access to. Users consent to the permissions at
runtime. The application acts as that user.

— Application Permissions: Enable apps to perform API operations without a signed in
user and access tenant wide data. Requires Admin Consent. The application acts as
itself

= Both App Registrations and Enterprise Applications can be assigned

permissions

E ©2021 Mandiant

Secrets and Certificates

= Applications can have secrets or certificates associated with them to allow
authentication as the identity of the app

— Roughly analogous to API Keys

— Applications can have multiple secrets or certificates associated with them
= Once created, they cannot be extracted from Azure AD

= Both App Registrations and Enterprise Apps can have secrets assigned to them

— Enterprise Apps can only have secrets assigned via PowerShell

E ©2021 Mandiant

Enterprise Application Hijacking

= Attackers have modified two key components of existing applications

— Adding new MS Graph Application Permissions, specifically file.read and
mail.read

— Adding new credentials (both secrets and certificates)
= Access tenant data remotely using the Graph API

— Conditional Access Policies DO NOT APPLY when authenticating using app secrets

— Service Principal sign-in logs were not available until mid-2020 and they don’t show in
the UAL

= There are dozens of Graph permissions to choose from

— Domain.ReadWrite.All — Add arogue IdP
— Directory.ReadWrite.All

E ©2021 Mandiant

Abuse of App Registrations

= Apps can be created as multi-tenant — customers can “add an app” to their
tenant

— The App Registration is the “master copy” of the app and is linked to all Enterprise
Apps in customer tenants

= |f we compromise the App Registration we can access data stored in any
tenant that has the Enterprise App copy

— All we need is the friendly name (e.g. Microsoft.com) of the tenant we want to access

— Good luck auditing activities that occur in someone else’s tenant
= Caveats

— Permissions in each individual tenant may be different

E ©2021 Mandiant

Basic info Location App Reg Tenant Basicinfo Location Target Tenant

Date 7/21/2021, 1:34:28 PM Date 7/21/2021, 1:34:28 PM

Request ID fffe5a53-f02d-4970-a2 14-60a50f70ac01
Request ID fffe5a53-f02d-4970-a214-60a50f70ac01

. Correlation ID e6b74edd-ddcb-47ae-b1ae-f8f8eb207537
Correlation ID e6b74edd-ddcb-47ae-b1ae-f8f8eb207537

Status Success
Status Success

Application
Application

Application ID 6a7d585¢c-c340-45a6-b72e-96fc7425babd
Application 1D B6ar7d585¢c-c340-45a6-b72e-96fc7425babd

Resource Microsoft Graph
Resource Microsoft Graph

Resource D 00000003-0000-0000-c000-000000000000
Resource D 00000002-0000-0000-c000-000000000000

Resource tenant ID

Resource tenant ID
Home tenant D

Home tenant [0 Service principal ID 9ddf2b4b-f989-4068-b98d-3399¢a83517a

Service principal 1D Sddf2bdb-f989-4068-b98d-3399¢al3517a Service principal name DoughTest

Service principal name DoughTest

E ©2021 Mandiant

EAN DIANT

Golden SANML

A

P

T E

A

Active
Directory

S

a Web
" Application
Proxy

v

<t:RequestSecurityTokenResponse
xmins:t="http://schemas.xmlsoap.org/ws/2005/02
[frust">

<saml:Assertion
xmins:saml="urn:oasis:names:tc:SAML:1.0:assertio

n'>

<saml:Attribute AttributeName="UPN"
AttributeNamespace="http://schemas.xmlsoap.
org/claims">

<saml:AttributeValue>
robin@doughcorp.co</saml:AttributeValue>
</saml:Attribute>

Decrypting the SigningToken

authEncrypt = .DecodeProtectedBlob(cipherText);

00000000h: [00 00 00 01[00 00 00 PO[04 10 Groupkey GUID}F A6 2F
00000010h: CA 24 FB C5 63 B3 4A |0 , 01
00000020h: 165 02 94 02 01 |66 09 60 26
00000030h: [B6 B9 6€)4 01 02

00000040h: E1 2C 77 7B B2 QA °A U2 53 F3 9D 7F 36 6F 23 7D
00000050h: 56 FB 8B 50 97 ,n o/ ab D7 OF F1 96 16|04 10 04
00000060h: D4 14 3B C2 B3 EncryptionlVA4 B4 FE 97 9A 29 CA
00000070h:
00000080h : Ciphertext
00000aooh :

00000aloh:

00000a20h:

00000a30h: B

00000ad40h: 51 DC 99 F6 BC CF DC 15 13 C9 FF EF 36 03 EO 65

000RBa50h: 9C 82 37
¥ 24 2021 vondgiont

DKM

I_|_5_||II_=JE_=J DC=doughcorp,DC =com
£ CN=Builtin

-7 cM=Computers

-5 CN=Deleted Objects
#-{3] OU=Domain Controllers
:| CM=ForeignSecurityPrincpals
[:| CM=Infrastructure

w55 CN=Keys

-2 ou=Lab

D CM=LostAndFound

:| CM=Managed Service Accounts
G2 CN=NTDS Quotas

-[F

Elzl CM=Program Data
=I5 CN=Microsoft
=77 CN=ADFS

: CM=CryptoPalicy
- 8, CN=CryptoPalicy

-5 CN=292188ce-012f-430b-b3ca-5733
' % CN=40711ade-7585-4 15-3f33-

E 25 ©2021 Mandiant

CN=40711ade-7586-4e15-9f33-6f09 7 cf48f5 Properties

Object Properties Security Atrbutes

GI‘OIJD ar User names:

SYSTEM
% Batman {batman@doughcaorp.ca)
‘ svc_adfs (swe_adfs@doughcomp.co)
SR Domain Admins (DOUGHCORP \Domain Admins)
SR Enterprise Admins (DOUGHCORPEnterprise Admins)
SR Key Admins (DOUGHCORP \Key Admins)

Add... Remave
Pemizsions for sve_adfs Allow Dermy
Full cortrol 1 O
Read]
Write O
Create all child objects |
Delete all child objects O |
| L ik ki (|

For special permissions or advanced settings, click
Advanced.

Key Derivation

[] DeriveKeySP800@_108|(HMAC prf, [1 label, [] context, number0fBytesToGenerate|)

— DKM key is not used itself to decrypt Signing Certificate
— Used as inifial input for HMAC-SHA256 Key Derivation (NIST SP 800-108)
= Mostly, but not exactly, follows the standard (because standards are hard ;)
— Context is the Nonce decoded from blob
— Label is the OIDs of the encryption algorithms decoded from blob

— Outputs keys to use for AES encryption as well as SHA256 HMAC for verification
of ciphertext

ﬂ 26 ©2021 Mandiant

Are we there yet?

= Claims issuance rules @RuleName = "Issue UPN"

c:[Tw pe ==
"http://schemas.mi cr osoft. com/ws/2008,/06,/1dentity/claims windowsaccountname™]

—Determines the claims that will i st s s g

("http: chemas. xmlsoap. ur"q-'c]a1m=--'LlF‘N"}l, query =

be |nC|Uded |n ‘I'he |Ssued SAML Eam-ﬂ.cc_urltNamE=rD" userPrincipalName; {1}", param = regexreplace(c.Value,

1_ |< " [(?<domai r'|‘-[-"'--.-.]+}|-. Feuser=.+)", "${userl™), param = c.Value);
oken @RuleName = "Query objectguid and msdsconsistencyguid for custom ImmutableId
claim™
— c:[Type ==
Order Of rUleS mOTTerS "http://schemas.microsoft. com/ws,/2008/06/ 1dent1ty/claims /windowsaccountname™]
=» add(store = "Active Directory"”, types =
— Defenders cannot see the ("http: s.microsoft. con/us/3016/0/1dent ity/clains jobjectouid”, =
. _ s 5. osoft. com/ws) ntity,/claims /msdsconsistencyguid™)
C|Q|ms 'I'hg'l' are pU‘I‘ N 'I'he query "samﬂ_.c::n:nuntﬂam 10}:0bj -ConsistencyGuid; {1}", param =
regexreplace(c.Value, "(7<domain=[A%\J+)% cuser=.+)", "${userl}™), param =
token BUT c.Value);
@RuleName = "Check for the existence of msdsconsistencyguid”
= MSFT can, to a degree NOT EXISTS([Type ==
http: ..=-chema=- ITI'I crosoft. com/ws,/2016,/02,1 d&r‘lt'lt}-'c'la1m=--'m=-d=-::ur1=-1 stencyguid™]
. . == Eldle}[JE = "urn:federation: tmp/ '||:H"Iag Value = "useguid™);
= May be monitoring for tokens _ _ R
@RuleName = "Issue msdsconsistencyguid as Immutable ID 1f 1t exists"
that have abnormal or c:[Type ==
2 "http://schemas.microsoft. com/ws,/20016/02/1dentity/claims /msdsconsistencyguid”
unneeded claims e omas Y vouid']

"http://schemas.microsoft. com/LivelD/Federation/2008,/05,/ImmutableID", Value =
c.Value);

m ©2021 Mandiant

Are we there yet?

P5 CivUsershsve_adfs= Get-AdfsRelvingPartyTrust | select TokenLifetime

TokenLifetime

= Token Lifetime

— Set per Relying Party Trust

— Default value of 0 == 60 minutes

— Defenders cannot see the Token Lifetime of submitted SAML tokens BUT
= Microsoft can
= May be monitoring for abnormal token lifetimes

— Spoofed tokens could have a lifetime of years, but will not be valid once the
ADEFS signing token is rotated after normal 365-day lifespan

m 28 ©2021 Mandiant

Bring your own signing cert

= Why dump the existing signing cerfificates when we can just use our
owne
— Access to the AD FS server not required
— Similar to @DrAzure AD AAD Backdoor, but a little stealthier
® Set-MsolDomainFederationSettings
— Global Admin and other privileged roles have access through MSOnline
PowerShell
— Nothing happens on the AD FS server

P5 Cert:“CurrentUser\My> Set-MsolDomainFederationSettings doughcorp. co

MIIDAzCCAeugAwIBAgIQHVAdxS Ro61D,/Dgdv / ABojANBgkghk1GO9w0BAD

= FADArMSkwIwYDVOQDEYEBREZ TIFNpZ 25 pbmcglL SBzdHMuZ G917 2h b3 JwLmMvbTAgFwinyMTA3IM AyM A5 N
DEaGASyMDOxMDoyMDIyMTkOMFowk zEpMC cGALUEAXxMgQURGUYETaWduaw5 nICO0gc3RzLmRvdWdoY 2 9ycC5 3

¥ 29 ©200 mandiant

okenSigningCertificate : [Subject]
CN=ADFS 5igning - sts.doughcorp.com

[Issuer]
CN=ADFS Signing - sts.doughcorp. com

[Serial MNumber]
61637941275E35804C39C92E4F0741E1

[Not Before]
11/26/2020 11:14:09 PM

[Not After]
11/26/2021 11:14:09 PM

[Thumbprint]
64361070221 8AC2BA058F51F78030D8CEO7ODBT1E

extTokenSigningCertificate : [Subject]
CN=ADFS Signing - sts.doughcorp. com

[Issuer] .
CN=ADF5 Signing - sts.doughcorp.com

[Serial Number]
105C40771ES51A3A943FCIAEBBEFFO3CAZ

[Not Before]
F20/2021 6:09:40 PM

Subject lssuer Effective Date BExpiration

[Thumbprint] . : : -
E193D383F3160D20635B1BC2BA40C2 SEP' Ice communications

CM=sts. doughcomp .com CM=sts. doughcom .com 117262020 11,2620
Token-decrypting

[=FCN=ADFS Encryption -sts... CN=ADFS Encryption -sts... 11/26/2020 11/26/20
Token-signing

=] CN=ADFS Signing - sts.dou... CN=ADFS Signing -sts.do... 11/26/2020 11/26/20

¥ 30 o201 mondiant

Bring your own signing cert

] No’rhing to see here, “"CreationTime": "2021-07-20T23:28:45",
To’rolly normal, "Operation": "Set federation settings on domain.",
no’rhing wWas "ResultStatus": "Success",
modified "Workload": "AzureActiveDirectory",

. "UserId": "admin@doughcorp.onmicrosoft.com",
No IP Address "ExtendedProperties": [

recorded {

"Name": "additionalDetails",
”UEI.UE": ll{}ll

”Namer: "extendedAuditEventCategory",
"Value": "Domain"

o "ModifiedProperties": [],
Y ©2021 Mandiant

EAN DIANT

ADFS Replication

Farmville

= For larger orgs, AD FS servers can exist in a farm configuration
= By default, all farm nodes use the same configuration and secrets

= Nodes are kept in sync by a replication service that runs on the primary
AD FS server (the first server that the AD FS role was installed on)

— It actually runs on all farm nodes, useful for attackers

¥ 33 ©2021 mondiant

Replicating

= Replication service uses Windows Communication Framework (WCF)

— Framework to easily build client server applications

— Developer can build on top of preset channels (HTTP) and security (WS-
Security, Kerberos)

= Endpoint is available at http://sts.acme.com:80/policystoretransfer

— Kerberos based authentication using WS-TRUST SPNEGO

— Data payloads are encrypted using shared secret derived from the Kerberos
session key

E 34 ©2021 Mandiant

Replicating
<PolicyStore>

<AuthorizationPolicy=@RuleName =

= "Permit Service Account"
exists([Type ==

"http://schemas.microsoft.com/ws/2008/06/
identity/claims/primarysid", Value == "
5-1-5-21-3508695881-2242692613-376241919-1107"])

=fgt; issue(Type = "http://schemas.microsoft.com/

authorization/claims/permit", Value
@Ru leName =

= "true");
"Permit Local Administrators"

exists([Type == &guot;http://schemas.microsoft.com/ws/2008/86/
identity/claims/groupsid", Value == "5-1-5-32-544&
quot;])

=> issue(Type = "http://schemas.microsoft.com/

authorization/claims/permit", Value = "truelquot;);
</AuthorizationPolicy=>

Replicating

= Quick and dirty
WCEF client to
inferact with the
replication service

= ~150 lines of code,
most of it
boilerplate WCF
initialization

¥ 36 ©200 mondiant

S

0]
i"
15|
[¥a]

Pt
r
I
=

using System.Xml;

[ServiceContract({Name="IPolicy5StoreReadOnlyTransfer”,
Namespace = “"http://schemas.microsoft.com/ws,/28689/12/
identityserver/protocols/policystore™)]

eferanres

L

Fpublic interface ServiceSettingsSync

{
[OperationContract]
¥mlElement GetState(string serviceObjectType, string
mask, string filter, int clientVersionNumber);
I

Escalate, persistently

= Edit the ObjectACL for the DKM key
to allow domain users read access

= Insert a new Authorization Policy
into the AD FS database to permit
access for the domain users
GroupsSID

= Any domain user can obtain the
AD FS signing key from anywhere
on the internal network

¥ 37 200 mandiant

Why?

= AD FS servers expose port 80 to all systems by default

— The AD FS role creates default firewall rules for us
= Stealth is built in for us ©
— Replication events are not logged at all
— Editing the AD FS configuration database is not logged either

— Audifing editing domain object ACLs (SACLs) is not often enabled in
environments

- e - - I e P —_ ——

& AD FS HTTP Services (TCP-In) ADF5 Allow Systemn Any TCP 20
& AD FS HTTPS Services (TCP-In) ADF5 Allow Systermn Any TCP 443

¥ 38 o202 mondiant

EAN DIANT

The End

